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ABSTRACT: It is assumed in the theory of water outlets that the flow
coresponding to the given head is the maximum possible [1] (the
principle of maximum flow), The available experimental evidence
only qualitatively reproduces the relations between the parameters
implied by this principle, whereas numerical calculations agree very
satisfactorily [2]. This indicates doubt as to whether the principle is
exact. Here Moiseev's method [3] is used to ascertain the meaning of
the relationships implied by the principle of maximum flow when used
to calculate the potential flow of anideal liquid in a centrifugal ejec-
tor. The resulting formula agrees well with experiment.

§1. Consider a spiral, axially symmeiric flow of an ideal liquid as
shown in Fig. 1 in axial section.

Here we have an xr coordinate system, in which x is the axis of
symmetry of the flow, AA'G'F'FG is a section of the unbounded layer
of liquid flowing in the cylindrical semi-infinite tube FF'E'E of unit
radius, BB'C'C is the internal cylindrical wall, and BB'D'D is the free
surface of the liquid, whose radius is r = o(x). The flow rate q and
circulation I' are given (we envisage potential flow, so T" = const);
vr, Vg, and vy are the radial, tangential, and axial components of
the velocity vector, respectvely,

Since the flow is potential, rv, = T'/2m; reduction in r increases
the centrifugal force, since v, increases, which favors departure at the
flow from the axis and formation of the cavity BB'D'D if q is not too
large.

The internal semi-infinite wall BB’C'C has two functions related
to two aspects of the problem that will be considered. Firstly, BB'C'C
is a cylindrical tangent to the free surface at B and B' in the examina-
tion of the radius of the free surface as a function of q and T (case 1),
and it assists in the computation,

Further, we have the question of the criterion for complete filling
of the space between BB'C'C and FF'E'E by the spiral flow. In that
case, BB'C'C is a real cylindrical wall of radius 1y (case 2), and the
point of detachment M moves onto BB'C'C and migrates towards x
increasing as q increases, At some finite rate q = qg, the entire space
between the cylinders is filled,

Now vy = 0 at M, while the axial velocity at M is vy; and it varies
from zero at B (when B and M coincide) to q/7 (1 — r%) at infinity.

The Bernoulli integral at the free surface takes the following form
(the liquid is weightless):
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We have to put vo = 0 in (1,1) in considering case 1, In both cases
it is assumed that o == I = const for x — «, i, €., we envisage
asymptotically uniform flow,
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§2, We now need a knowledge of the boundary derivative of the
quasi-conformal mapping of a certain special form, namely we must
find a function u that satisfies
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subject to the boundary conditions

u=20 for B =1, u=n = const for f=f(a). (2.2)

Function f( o) is smooth and differs little from a counstant, so all
of its derivatives are small, the largest ones being the first and
second [3].
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We introduce in (2.2) the parameter € defined by A = &a:
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and seek a solution in the form of the series
u = up (A, B) + 2%y (A, B) - ... (2.4)

We substitute (2.4) into (2.3) and combine terms with the same
powers of £ to get the following equations for the first two coefficients:
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The solution to (2.5) subject to the boundary conditions applicable
10 (2.2) is
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Taking only the two terms of (2,4) in (2.6), we find on the f curve
that
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Terms of higher powers of & add to (2.7) terms containing higher
derivatives of §, which are assumed to be smail,

§3, We assume that we know the transformation p = p(r,x), 7=
= 7(r, x) that maps the rectangle ABCEFG in the xr-plane (Fig. 1) on
a band in the p7-plane (Fig. 2), the comesponding points being clear
from Figs. 1 and 2, insuch a way that the points on the straight line
GE in the pr-plane have an ordinate of unity, while the points on AC
have an ordinate of ry, and the equation of the form of (2,1) in the xI-
plane has the same form in the pr-plane,

Let the curve r = o(X) become the curve T = 6(p). Taking the
region ABDEG as being very similar to band ABCEG, we put

o =10+ @ (p) (B8 —r)+ D (®) (§— ro)*+oers (3.1)
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in which @; and &, are certain functions of p that become infinite for
p = 0, Moreover, the x1- and pr-planes coincide for large x and p,
so &;~>1 and ®;, ~> 0 as p —> %, In view of this, we will not use the
third term in the expansion,

The tangential velocity is taken as being independent of x and de-
pendent in a known fashion on r. We can introduce a complex poten-
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tial W, whose components (the current function ¢ and the potential @)
describe only radial and axial flow. The flow region in the W-plane
is represented by a band, withy = 0 on GFE and ¢ = q/2% on ABD,
Also,
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Assuming that vy < vy at the free surface, we write (1.1) in the
form
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In the variables of the pr-plane, this equation takes the form
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The problem of finding ¥ in the pr-plane is analogous to that of
§2, so we use (2.7) to get from (3,3) that
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The notation in (3,4) is as follows:
ar \2 0 c2n?
N:(-(,F), m=rq, 6:—;;—, p:"-og(ﬁ’
L N oo for p—0
V= N1 for psoo.
The solution to (3,4) must satisfy the boundary conditions
8(0) =1, db/dp| =0, (3.5)

p=0

Now (3.4) contains the functions N and $;, whose explicit form is
unknown, since it is difficult to construct the quasi-conformal map-
ping; but if this can be done, (3.4) will include information on the
effects of the conditions at the input (flow geometry) on the radius of
the jet. In what follows we use only known limiting values of these
functions,

§4, The p and v of (3.4) are unknown, but there is a condition
for finding #, since for a certain ¢ expression (3.4) must have a solu-
tion that tends asymptotically to a constant .. In case 2 let the
detachment of the liquid occur at large x, so that we can put N = 1
and @, = 1 in (3.4). The equation takes the form
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As the point of detachment lies at large x, & differs little from
unity (the space between the cylinders is almost filled), and all de-
rivatives of § are small, so the squares of the derivatives may be ne-
glected in comparison with the first powers,

We multiply (4.1) by 2méé" and integrate it, subject to the bound-
ary conditions of (3.5) to get
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in whichy = 6% — 1 and D(y) is a function related to R(8). From (4.2)
we get
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For p — « we have y = y,, = const, sothis integral must diverge
aty = y,, which means that the expression under the radical has a
repeated root y,,. The condition for this is

(v — o) — & (I — ¥)(Yauk + Yau) = 0. (4.3)

If the point of detachment recedes to infinity, v -7, and (4.3)
gives

v =1, or p=2m/(1 —mpB. (4.4)

The principle of maximum flow gives, for case 1, a formula
similar in form to (4.4), with m = 2 replaced by my = 1% [2]. The
true meaning of (4.4) is, therefore, that this is the criterion for filling
of the space between the cylinders by a spiral flow with the geometry
of Fig, 1.

It is found by considering the two-dimensional analog of case 1
for a liquid with weight that N and @; have little effect on the result,
so we consider (3.4) withv =0, N=1, and ;= 1, Weputy=1~
— mé? and expand In mé? as a series in y up to terms of the third
power inclusive to get
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We multiply (4.5) by y', integrate, and proceed as in deriving
(4.4) to get the condition for existence of an asymptotically homo-
geneous solution to (4.9):
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To this value of y there corresponds y,, = 1 — m, i,e., expansion
up to the third power in y corresponds to the assumption that the inner
surface of the flow is cylindrical, since y = 1 — mé?,

Figure 3 compares (4.4) and (4,6) with the experimental data of
[2], in which curve 1 is from (4.4) and curve 2 from (4.6), while
curve 3 is from experiment. Note that (4.6) was derived on the as-
sumption that 1y = I'e.
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