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ABSTRACT: It is assumed in  the theory of water  outlets  that  the flow 

corresponding to the g iven  head is the m a x i m u m  possible [ i ]  ( the 

p r inc ip le  of m a x i m u m  flow). The a v a i l a b l e  expe r imen t a l  ev idence  
only qua l i t a t i ve ly  reproduces the relat ions between the parameters  

imp l i ed  by this p r inc ip le ,  whereas numer i ca l  c a l cu l a t i ons  agree  very 

sa t is factor i ly  [2 ] .  This ind ica tes  doubt as to whether  the p r inc ip le  is 

exac t .  Here Moiseev ' s  method  [3] is used to ascer ta in  the m e a n i n g  of 
the relat ionships  i m p l i e d  by the pr inc ip le  of m a x i m u m  flow when used 

to c a l c u l a t e  the po t en t i a l  flow of an i dea l  l iquid  in  a cen t r i fuga l  e j ec -  

tor. The resul t ing formula  agrees wel l  with exper iment .  

w  Consider  a spiral ,  ax i a l ly  symmet r i c  flow of an i dea l  l iquid as 

shown in Fig. 1 in ax i a l  section.  
Here we have  an xr coord ina te  system, in  which x is the axis of 

symmet ry  of the flow, AA'G'F 'FG is a sect ion of the unbounded l aye r  

of l iquid  f lowing in  the cy l ind r i ca l  s e m i - i n f i n i t e  tube FF'E'E of uni t  

radius, BB'C'C is the in t e rna l  cy l ind r i ca l  wal l ,  and BB'D'D is the free 

surface of the l iquid ,  whose radius is r = a(x) .  The flow rate q and 

c i rcu la t ion  F are g iven  (we envisage  po t en t i a l  f low, so F = const); 

\ r ,  v~, and v x are the radia l ,  t angen t i a l ,  and ax ia l  components  of 

the ve loc i ty  vector ,  respec t ive ly .  
Since the flow is po ten t ia l ,  rvc0 = F/2~r; reduct ion in r increases  

the cen t r i fuga l  force, s ince v o increases ,  which favors departure  at the 

flow from the axis and format ion  of the cav i ty  BB'D'D if  q is not too 

large.  
The in te rna l  s e m i - i n f i n i t e  walI  BB'C'C has two functions re la ted  

to two aspects of the prob lem that  wi l i  be considered.  Firstly, BB'C'C 

is a cy l ind r i ca l  tangent  ro the free surface at  B and B' in  the e x a m i n a -  

t ion of the radius of the free surface as a funct ion of q and F (case 1), 

and i t  assists in  the computa t ion .  
Further, we have  the quest ion of the c r i te r ion  for c o m p l e t e  f i l l ing 

of the space bet~,een BB'G'C and FF'E'E by the spiral  flow. In that  

case,  BB'C'C is a real cy l ind r i ca l  ~ a l l  of radius r o (case 2), and the 

point  of de t achmen t  M moves  onto BB'C'C and migra tes  towards x 

increasing as q increases.  At some f ini te  ra te  q = %,  the ent i re  space 

between the cy l inders  is f i l led.  
Now Vr = 0 at  M, whi le  the a x i a l  v e l o c i t y  a t  M is v 0 ; and i t  var ies  

from zero at B (when B and M co inc ide)  to q / ~  (1 - re0) at inf in i ty .  

The Bernoulli in tegra l  at the free surface takes the fol lowing form 

(the l iquid  is weightless) :  

F~ F ~ 
4a.~z~ ~- Vr~ '-- Vx'- : 2n~ro~ -u vo ~ . (i.1) 

We have  to put v0 = 0 in (1.1) in  consider ing case 1. In both cases 

i t  is assumed tha t  o --'.- r~ = const for x -+ % i. e . ,  we envisage  

a sympto t i ea l ly  uni{orm flow. 
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Fig. 1 

w We now need a knowledge  of the boundary de r iva t ive  of the 

quas i -conformal  mapp ing  of a c e r t a i n  spec ia l  form, name ly  we must 

find a function u that  satisfies 

02u 3Za 't Ou 
o -  a + ~- ~ - ~  = o, (2.1) 

subject  to the boundary condi t ions  

u = 0  for ~ =  1, u =  n = e o n s t  for ~ =  l (~ ) .  (2.2) 

Funct ion f ( c  0 is smooth and differs l i t t l e  from a constant ,  so all  
of its der iva t ives  are smal l ,  the la rges t  ones be ing  the first and 

second [3]. 
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Fig. 2 

We int roduce in (2.2) the p a r a m e t e r  g def ined by k = c a :  

O-ou l Ou 02u ( .~ ) 
O~ 2 3 0[3 @ s~ ~ = 0 e = (2.3)  

and seek a solut ion in the form of the series 

u = uo 0% 6) @ e-oul ()~, [3) ~- .... (2.4)  

We subst i tute  (2.4) into (2.3) and combine  te rms  wi th  the same 

powers of ~ to get  the fol lowing equat ions  for the first two coeff ic ients :  

O-ouo i Ouo O-ou~ 1 0 u l  02Uo 
03 ~ ~ 0 :3 - -0 ,  '0~ 2 ~ a t -  O i  s "  (2.5) 

The solut ion to (2.5) subject  to the boundary condi t ions  app l i cab le  

to (2.2) is 

.o = ~ (~,) (~-o - 1) (a (~) = ~ ,  
a,, t)  2 

~-o (ln ,3 2 - -  1) 1 + u~ = - - ~ L  4 -- 

a"~ 2 i- (X2 _ _  1)2 
+ ~ g - _ ~ 3 L l - - - T - - + / x ~ l n x 2 - - X 2 ) [  + 

+ a" [ ( x ~ =  l)-o--X~(ln % - ~  1)] 
~ ( ~ -  x)~L 2 

I t - 7 - ) ) '  (2.6) t/z(),}= ( "  ' 

Taking  only the two terms of (2.4) in (2.6), we find on the 2[ curve  

that  

I (Ou '-' 4n 2 [ ] ( 12 - -1  . lnF" ,'1 
/=C gga] = ( l - - F - )  ~- l + 7 " j 2 - - - - Z T t - - T - - t + T r z ~ - ~ ) j "  (2.7) 

Terms  of h igher  powers of ~ add to (2.7) t e rms  con ta in ing  h igher  

der iva t ives  of ~, which are assumed to be smal l .  
w We assume tha t  we know the t ransformat ion p = p ( r , x ) ,  r = 

= r(r,  x) tha t  maps the rec tang le  ABCEFG in the x r -p lane  (Fig. 1) on 
a band in  the pv- p lane  (Fig. 2), the corresponding points be ing c l ea r  

from Figs. 1 and 2, in such a way tha t  the points on the straight  l ine  

GE in the p r - p l a n e  have  an ordinate  of unity,  whi le  the points on AC 

have  an ordinate  of r o , and the equa t ion  of the form of (2.1) in the xr- 

p lane  has the same  form in the p r - p l a n e .  
Let  the curve  r = o(x) b e c o m e  the curve  r = O(p). Tak ing  the 

region ABDEG as being very s imi l a r  to band ABCEO, we put 

O : ro @ ~ I ( P )  ( O i  to) @ ~2 (P) ( 0 - -  ro)2@ .. . .  (3.1)  
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in which r and r are ce r t a in  functions of p that  become  inf in i te  for 

p = 0. Moreover, the xr- and p r - p l a n e s  co inc ide  for l a rge  x and p, 

so r 1 and ez ~ 0 as p ---* ,o  In v iew of this, we wi l l  not use the 
third term in the expansion.  

The t angen t i a l  ve loc i ty  is t aken  as being independent  of x and de-  

pendent  in  a known fashion on r. We can  in t roduce  a comp lex  poten-  
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Fig. 3 

t i a l  W, whose components  ( the current  funct ion ~ and the po t en t i a l  q~) 

describe only radial and axial flow. The flow region in the W-plane 

is represented by a band, withO= 0 on GFE and ~b = q/2~r on ABD. 

Also, 

i 0r  I o~ 0 ~ r  0,r  i o~ 
v = - - 7 ~ - z  ' v x ~  r Or ' ~ JT; r Or = 0 "  

Assuming that  vr << v x at the free surface,  we wri te  (1.1) in the 
form 

0"Tr ~ r0 2 + v~ 

In the var iables  of the p~-p lane ,  this equat ion takes the form 

Ox Or § [roq- q ) l (O- - ro )  ~1 = 7~o ~ + v ~  (3.3) 

The problem of f inding ~ in the p r - p l a n e  is analogous to that  of 

w so we use (2.7) to get  from (3.3) tha t  

t { d~8[ _ 

(i - -  mS") ' ~ + n (8) c/pa I - 

= ~ U ~ E ( ~ _ - - a - ~ y  ( o - i ) + , N ,  

8 ,n6 /mS 2 -  i l___n,,,5~ 
R ( ) = ~  g - i + m S , _ t / .  (3.4) 

The notat ion in  (3.4) is as follows: 

N = \ - ~ - /  , ,n  = ro ~, 6 = " ~ o '  l't - -  ro~'q 2 '  

~ N ~ o o  for p ~ 0  
V = V o " ~ y ,  N - * t  for p ~ o  

The solut ion to (3.4) must  satisfy the boundary condi t ions  

5(0)  = t ,  d h / d p ] p =  o = 0 .  (3.5) 

Now (3.4) conta ins  the functions N and r whose exp l i c i t  form is 
unknown, s ince i t  is d i f f icul t  to construct  the quas i -eonformal  map-  

ping; but i f  this can  be done, (3.4) wi l l  inc lude  in format ion  on the 

effects of the condi t ions  at  the input (flow geometry)  on the radius of 

the je t .  In what  follows we use only known l i m i t i n g  values  of these 
functions. 

w The # and y of (3.4) are unknown, but there is a condi t ion  
for f inding g, s ince for a ce r t a in  ~ expression (3.4) must have  a solu- 

t ion that  tends a sympto t i ca l ly  to a constant  6,~. In case 2 le t  the 

d e t a c h m e n t  of the l iquid  occur  a t  l a rge  x, so that  we can  put N = 1 

and r  = 1 in (3.4). The equa t ion  takes the form 

(1 -- ,n62) e i q- R (6) dp.~j -- ~ --~ ~- v .  (4.1) 

As the point  of de t achmen t  l ies  at la rge  x, 6 differs l i t t l e  from 
unity (the space be tween the cyl inders  is a lmost  f i l led) ,  and a l l  de-  
r iva t ives  of 5 are smal l ,  so the squares of the der ivat ives  may  be ne- 

g l ec t ed  in compar i son  with the first powers. 

We mul t i p ly  (4.1) by 2m55 '  and in tegra te  it ,  subject  to the bound- 
ary condi t ions of (3.5) to get  

D (y) (y')~ = 
=~lf~lzk  -}- llall,)y~ -~  y (k'V - -  1/21t ) q- (l - -  V) 

(y ~ 5 2 -  1, k = m / ( t  - -  m ) ,  l = t / ( t  - -  m )  t )  , ( 4 . 2 )  

in which y = 5 z -- 1 and D(y) is a function re la ted  to R(5). From (4.2) 

we ge t  

KD du 
~(i/2 p,k q- 1/S ~,) y~ -~ y (kv - -  1/2 [~) ~- (1 - -  V) = p"  

For p .-*- ,~ we have  y --*- y~ = const, so this in tegra l  must  d iverge  
a t  y = y,~, which means  that  the expression under the rad ica l  has a 

repeated  root y,~. The condi t ion  for this is 

(kv - -  1/2~)2 - -  4 (l  - -  'v)(ll2~tk + 1/3~ ) = 0. (4.3) 

If the point  of de t achmen t  recedes  to inf in i ty ,  y --* l ,  and (4.3) 

g ives  

/0r = 1/~t, or Ix = 2m/(1  - -  m) 3 . (4.4) 

The p r inc ip le  of m a x i m u m  flow gives,  for case  1, a formula 

s imi l a r  in form to (4.4), with m = r g rep laced  by m I = rZ~ [2]. The 
true mean ing  of (4.4) is, therefore,  that this is the cr i ter ion for f i l l ing  

of the space be tween  the cyl inders  by a spiral  flow with the geomet ry  

of Fig. 1. 

It is found by consider ing the two-d imens iona l  analog of case 1 

for a l iquid  with weight  that  N and r have  l i t t l e  ef fect  on the result,  

so we consider  (3.4) with u = 0, N = 1, and r  = 1. We put y = 1 -- 
-- m5 z and expand In m6 s as a series in y up to terms of the third 

power inc lus ive  to ge t  

t " ( , , ~ )  
V - r - ~ - ~ - - p .  i - - i - - y  y----0. (4.5) 

We mul t i p ly  (4.5) by y ' ,  in tegra te ,  and proceed as in  der iv ing 

(4.4) to get  the condi t ion  for ex i s tence  of an a sympto t i ca l ly  homo-  

geneous solution to (4.5): 

l - b r a  
I~ - -  (t -- m )  2 " ( 4 . 6 )  

To this va lue  of/x there corresponds y~  = 1 -- m,  i . e . ,  expansion 
up to the third power in y corresponds to the assumption tha t  the inner 

surface of the flow is cy l ind r i ca l ,  s ince y = 1 - m5 s. 

Figure 3 compares  (4.4) and (4.6) with the e x p e r i m e n t a l  data of 

[2],  in which curve  I is from (4.4) and curve 2 from (4.6), while  

curve  3 is from exper iment .  Note that  (4.6) was der ived on the as- 

sumpt ion  that  r o = r ~ .  
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